Tetrahedron Letters,Vol.25,No.41,pp 4633-4636,1984 0040-4039/84 \$3.00 + .OO ©1984 Pergamon Press Ltd.

> TOTAL SYNTHESIS OF ANHYDRO LEVUGLANDIN D_2 Bruce S. Levison, Donald B. Miller, Robert G. Salomon["] Department of Chemistry

Case Western Reserve University Cleveland, Ohio 44106 U.S.A.

Abstract. Total synthesis of anhydro levuglandin D_2 [9-acetyl-8-formyl-5(Z), 9(E), ll(E)-heptadecatrienoic acid] confirms the structure assigned to this 9,10-seco prostanoic acid product from solvent induced rearrangement of the prostaglandin endoperoxide PGH₂ in aqueous solution.

The prostaglandin (PG) endoperoxide PGH₂ ($\underline{1}$) is extraordinarily unstable in the aqueous environment of its biosynthesis.¹ Besides the prostaglandins PGE₂ (2) and PGD₂ (3) which were recognized previously as products of this decomposition, 1 two new aldehyde products were recently shown to be formed in about 20% combined yield.² Model studies³ suggested that these new products are levulinaldehyde derivatives which we named levuglandin E₂ (LGE₂, 4) and levuglandin D₂ (LGD₂, »'because of their respective relationship to E and D prostaglandins by aldol condensation (see scheme 1).

Scheme 1

in contrast with thromboxanes which are 11,12-seco **proetenoic mida,** the E levuglandins are lO,ll-seco and the D levuglandins are 9.10-seco prostanoic acids. Since the levuglandins are vinylogous S-hydroxy carbonyl compounds, they readily undergo dehydration affording anhydro derivatives <u>6</u> and <u>7</u>. These dehydration products were both isolated recently. However, 'H NMR and mass

spectral data were deemed inadaquate for unambiguous distinction between $\underline{6}$ and $\underline{7}$. Therefore, total synthesis was desirable to firmly establish the identities of the E_2 and D_2 levuglandins. A short total synthesis of anhydro LGD₂ (7) is outlined in scheme II.

Scheme II

Our initial plan for construction of the intermediate llb envisioned Michael addition of vinyl cuprate <u>10</u>° to the α,β-unsaturated lactone <u>9a</u>. However, even in the presence of MgBr₂ (l equiv)
. as a Lewis acid catalyst,⁷ treatment of 9a with 10 in Et₂0-THF solution at -78^o to 20^oC followed by protic quench with 10% aqueous NH₄Cl led to recovery of $9a$ and formation of 3-t-butyldimethylsiloxyoct-l-ene. Therefore, the more electrophilic Michael acceptor $9b^8$ was prepared by heating a benzene solution of dimethyl acetonylidenemalonate $(8)^9$ in the presence of p-toluenesulfonic acid (9 mol %). Treatment of <u>9b</u> with vinyl cuprate <u>10</u> in ether solution at -78° to 20°C followed by protic quench with saturated aqueous NH_ACl afforded lla. Decarbomethoxylation of lla was achieved by heating a solution in DMSO-water 5:1 (v/v) under reflux in the presence of NaCl (1 equiv). 10 The product lactone $\underline{11b}$ was lithiated with lithium hexamethyldisilazane in THF at -78°C. Allylation of the lithium enolate <u>llc</u> with t-butyl (2)-7-bromohept-5-enoate¹¹ (l equiv) in THF-HMPA 92:8 (v/v) at -40^o to -20^oC for lh, followed by quenching with saturated aqueous NH₄Cl provided 12 which possesses the carbon skeleton of LGD_2 . The t-butyl ester was chosen because of its expected

resistance to the aluminum hydride reduction¹² which is required for adjusting the oxidation level of 12. The key selective reduction was achieved in good yield using lithium di-i-butyl-t-butylhydridoaluminate in pentane-tetrahydrofuran at -78⁰ to 20⁰C followed by quenching with methanol and then acetic acid. Note that the final product is the ketoaldehyde 13. The observed lack of overreduction suggests that the initially formed reduction product, a hemiacetal-mixed ketal, is not converted to 13 until the protic quench.

It is interesting that 13 appears to be less prone to dehydration than LGD₂ (5), the corresponding hydroxy acid. Thus, 13 is readily purified and isolated in 67% yield from the key reduction of 12. Treatment with formic acid does promote elimination and concomitant dealkylation of the ester to provide anhydro LGD₂ (7). The ¹H NMR and mass spectra of 7 are identical with those of anhydro LGD₂ obtained by solvent induced decomposition of PGH₂. These spectra are presented in figures 1 and 2. An E configuration for the 9,10 C=C bond is indicated by the ¹H NMR spectrum of <u>7</u>

Figure 1. 200 MHz ¹H NMR spectrum of anhydro levuglandin D_2 in CDC13; inset shows C-10 hydrogen resonance of spectrum in CD_2Cl_2 .

Figure 2. Mass spectrum of anhydro levuglandin D_2 (7).

4636

since only one vinyl proton resonance appears at δ >7.0. The resonances for two vinyl protons, i.e. those on C₁₀ and C₁₁, would be expected¹³ to appear at δ >7.0 if the 9,10 C=C bond had the alternative 2 configuration.

Acknowledgement: This research was assisted financially by Crant CM-21249 from the Division of General Medical Sclences of the National Institutes of Health.

References and Notes

- 1. (a) Hamberg, M.; Samuelsson, B. Proc. Nat. Acad. Sci. USA 1973, 70, 899. (b) Hamberg, M.; Svensson, J.; Wakabayashi, T.; Samuelsson, B. ibid 1974, 71, 345. (c) Nugteren, D.H.; Hazelhof, E. Biochim. Biophys. Acta 1973, 326, 448. (d) Raz, A.; Kenig-Wakshal, R.; Schwartzman, M. ibid 1977, 488, 322. (ej Nugteren, D.H.; Christ-Hazelhof, E. Adv. Prostaglandin Thromboxane Res. 1980, 6,129.
- 2. (6) Zagorski, M.G.; Salomon, R.G.J. Am. Chem. Soc. 1982, 104, 3498. (b) Salomon, R.G.; Miller, D.B.; Zagorski, M.G.; Coughlin, D.J. ibid 1984, in press.
- 3. (al Salomon, R.G.; Salomon, M.F.; Coughlin, D.J. ibid 1978, 100, 660. (b) Salomon, R.G.; Coughlin, D.J. ibid 1979, 101, 2761.
- 4. Miller, D.B.; Lal, K.; Salomon, R.G.ibid 1984, submitted.
- 5. Corey, E.J.; Beames, D.J. ibid 1972, 94, 7210.
- 6. Seltzer, S.; Stevens, K.D. J. Org. Chem. 1968, 33, 2708.
- 7. (a) Salomon, R.G.; Miller, D.B.; Raychaudhuri, S.R.; Avasthi, K.; Lal, K. J. Am. Chem. Soc. 1984, submitted. (d) Yamamoto, Y.; Yamamoto, S.; Yatagai, H.; Ishihara, Y.; Maruyama, K. J. Org. Chem. 1982, 47 119.
- 8. 9b shows m.p. $68-70^{\circ}$ C, white flakes from Et₂0; ¹H NMR (CDC1₃, 60 MHz) δ 1.70(s,3H), 3.27(s,3H), $3.8(s, 3h)$, $7.84(s, h)$.
- 9. (a) Ouali, M.S.; Vaultier. M.; Corrie, R. Synthesis 1977, 626. (b) Mayring, L.; Severin, T. Chem. Ber. 1981, 114, 3863.
- 10. Krapcho, A.P.; Lovey, A.J. Tetrahedron Lett. 1973, 957.
- II. This bromoester was prepared from 7-tetrahydropyranyloxy-5-heptynoic acld [(a) Martel, J.; Toromanoff, E. German Patent 2,121,361 (1971); Chem. Abstr. 1972, 76, 24712d. (b) Corey, E.J.; Sachdev,H.S.J. Am. Chem. Soc. 1972, 95, 8483. (c) Martel, J.; Blade-Font, A.; Marie, C.; Vivat, M.; Toromanoff, E.; Buendia, J. Bull. Soc. Chim. Fr. II 1978, 131] by t-butylation with N,N-dimethylformamide di-t-butylacetal [Widmer, V. Synthesis 1983, 135], selective hydrolysis of the tetrahydropyranyl acetal with acetic acid in THF [Bernady, K.F.; Floyd, M.B.; Poletto. J.F.; Weiss, M.J. J. Org. Chem. 1979, 44, 1438], partial hydrogenation in the presence of palladium on barium sulfate and synthetic quinoline [Cram,D.J.; Allinger, N.L. J. Am. Chem. Soc. 1955, 78, 2518] and treatment of the resulting alcohol with PBr₃ in ether solution at $0^{\circ}-35^{\circ}$ C.
- 12. Greene, T.W. "Protective Groups in Organic Synthesis", John Wiley d Sons, New York, p. 317 (1981).
- 13. Ananthasubramanian, L.; Carey, S.T.; Nair, M.S.R. Tetrahedron Lett. 1978, 3527, and references cited therein.

(Received in USA 31 May 1984)